
© 2014 RadiumBoards
All Rights Reserved

TPS65910 IoT Gateway Reference
Design Using i.MX6 SL

User Guide

Revision 1.0

© 2016 RadiumBoards Page 2 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

Copyright Notice

This document is copyrighted material of RadiumBoards, All Rights Reserved. No part of this

document, in whole or in part, may be used, reproduced, stored in a retrieval system or

transmitted, in any form, or by any means, electronic or otherwise, including photocopying,

reprinting, or recording, for any purpose, without the express written permission of

RadiumBoards.

Legal Disclaimer

The information contained in this document is subject to change without notice. The

information in this document is provided for informational purposes only. RadiumBoards

specifically disclaims all warranties, express or limited, including, but not limited, to the

implied warranties of merchantability and fitness for a particular purpose, except as

provided for in a separate software license agreement.

RadiumBoards

RadiumBoards is a unique website providing complete board and software solutions

addressing a broad range of markets including Security and Surveillance, Networking,

Wireless, Video, Audio, Automotive, Mobile Device and IOT (Internet of Things).

OEMs and Systems Integrators can shop for complete assemblies, with firmware, BSP and

applications ready to integrate into your own enclosures.

ODMs can shop for reference designs complete with full BSP (Board Support Package) and

application support. Radium Boards can also provide any level of customization to the

hardware or software required by the ODM to help differentiate in their markets.

Electronics hardware and software hobbyists, experimenters and educators now have

access to complete high performance platforms for application in an infinite range of

projects.

© 2016 RadiumBoards Page 3 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

Correspondence

Corporate Office

B-22, Infocity Sector-34,

Gurgaon-122001, Haryana, India

Tel No: +91 124 4284250

US Office

2025 Gateway Place, Suite 465

San Jose, California 95110

E-MAIL

info@radiumboards.com

WEBSITE

www.radiumboards.com

VVDN Technologies

VVDN Technologies Pvt. Ltd. is a sibling company of RadiumBoards and is responsible for the

design and development of all products sold through the RadiumBoards brand.

Founded in 2007, VVDN is a technology innovation and development company providing a

broad spectrum of services and technology expertise to our core domains. VVDN provides

ά/ƻƴŎŜǇǘ ǘƻ /ǳǎǘƻƳŜǊέ ǎŜǊǾƛŎŜǎ ŀǘ ŀƴȅ Ǉƻƛƴǘ ƛƴ ǘƘŜ ŘŜǾŜƭƻǇƳŜƴǘ ŎȅŎƭŜΣ ŀǎ ǿŜƭƭ ŀǎ Ŧǳƭƭ

turnkey solutions.

WEBSITE

www.vvdntech.com

http://www.radiumboards.com/
http://www.vvdntech.com/

© 2016 RadiumBoards Page 4 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

 ... 6

 .. 6

 .. 6

 ... 7

 ... 7

 ... 8

 ... 8

 .. 9

 ... 10

 ... 10

 ... 10

 .. 10

 .. 11

.. 12

.. 12

 .. 13

 .. 14

 .. 14

 ... 14

 .. 15

 .. 15

 ... 15

 ... 15

 .. 16

 ... 16

 .. 16

 .. 17

 .. 17

 ... 17

 .. 20

 ... 20

 ... 20

 .. 22

 ... 23

 ... 24

... 25

 .. 26

 ... 27

 .. 30

 ... 30

 .. 30

 .. 31

 .. 32

 ... 32

 ... 32

 .. 33

 ... 33

© 2016 RadiumBoards Page 5 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

 ... 35

 .. 36

 ... 36

 ... 36

 .. 38

 ... 8

 .. 9

 .. 34

TABLE 1: DOCUMENT CONVENTIONS .. 6

TABLE 2: TERMS AND ABBREVIATIONS ... 6

© 2016 RadiumBoards Page 6 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

1. About This Document

This document provides details of the TPS65910 Based IOT Gateway including its

features, functionality, installation and configuration.

1.1 Document Conventions

The different conventions used in this document are explained in the following table:

Convention Description

i
Note: Provides information about important

features or instructions.

x
Caution: Alerts you to potential damage to a

program, device, or system.

Warning: Alerts you to potential injury or fatality

and to potential electrical hazards.

Bold font Any option that needs to be selected or typed in

the user interface is represented using bold font.

Table 1: Document Conventions

1.2 Terms and Abbreviations

 The different terms and abbreviations used in this document are explained below

Table 2: Terms and Abbreviations

Terms / Abbreviation Description / Expansion

ADAS Advanced Driving Assistance System

VS Video Security

DSS Display Subsystem

GUI Graphical User Interface

LSP Linux Support Package

MB/s Mega Byte per second

Mbps Mega bit per second

OSD On Screen Display

PTZ Pan Tilt Zoom

TOF Time of Flight

RTSP Real Time Streaming Protocol

SDK Software Development Kit

UI User Interface

MSFP Multi Sensor Fusion Platform

© 2016 RadiumBoards Page 7 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

2. Introduction

This document describes the software design of IOT gateway to be designed for Texas
Instrument. These requirements have been derived from the requirement specifications
provided by the customer, V±5bΩǎ ōǳǎƛƴŜǎǎ ǇǊƻǇƻǎŀƭ ǘƻ ŎǳǎǘƻƳŜǊ ŀƴŘ ǎǳōǎŜǉǳŜƴǘ
discussions with the customer and agreed upon product requirement document.

This SDD is made for the reference of

¶ Product managers at VVDN/TI to confirm the architecture before/during

development.

¶ Engineering team at VVDN for System Architecture, Design and development of

TIxU_PMIC.

¶ System Integration and Verification team at VVDN for firmware development and

validation plan drafting.

2.1 Product Overview

IOT gateway functions as a gateway between a ZigBee network and an IP network through

Ethernet and Wi-Fi. On the ZigBee network side, it acts as a node talking to a ZigBee enable

smart devices like light nodes and sensors.

On the IP network side, IOTG streams the collected information to smart devices like phones

and provides remote control option from these devices as well.

© 2016 RadiumBoards Page 8 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

Figure 1 System Block diagram

2.2 Software Scope of the Project

The main scope of the project is to design, develop and deliver the hardware and software

for IOT gateway meeting all the requirements specified in the PRD.

2.3 Software Design and Development

¶ Software Design and Development

¶ Boot loader and Linux Porting

¶ Linux device driver porting/development for all the peripherals

¶ The board will support the following low power modes

¶ RUN, WAIT, STOP, DORMANT which are maps to kernel power management systems
like standby, Mem (suspend to RAM), freeze (lo-power idle).

¶ Board Bring-up
¶ Testing and Validation

© 2016 RadiumBoards Page 9 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

Following documentations will be provided

1. User Guide: - Illustrating how to boot and flash the board.

2. Software Developer's Guide:- How to rebuild all software provided

3. Test Report:- What use cases will be tested and the equipment used for the
testing

4. Power consumption document:- Maps to Freescale document showing
power consumption for various use cases

3. Software Architecture

 The software architecture diagram on i.MX6 SL is shown below:

 Figure 2 Software architecture diagram on i.MX6 SL

© 2016 RadiumBoards Page 10 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

4. BUILD setup and guide

The Yocto Project is an open-source collaboration focused on embedded Linux OS
development.

Files used to build an image are stored in layers. Layers contain different types of
customizations and come from different sources. Some of the files in a layer are called
recipes. Yocto Project recipes contain the mechanism to retrieve source code, build and
package a component.

4.1 Yocto Project community layer

Following are the layers which are used in this project:

meta-fsl-arm: provides support for the base and for Freescale ARM reference boards

meta-fsl-arm-extra: provides support for 3rd party and partner boards

meta-fsl-demos: additional items to aid in development

base: Provides base configuration for FSL Community BSP

meta-openembedded: Collection of layers for the OE-core universe. See
layers.openembedded.org/.

poky: basic Yocto Project items in Poky. See the Poky README for details

meta-vvdn: customized layer for the configuration of kernel and u-boot.

4.2 Host Setup

To get the Yocto Project in a Linux Host Machine, the packages and utilities described below
must be installed. When building on a machine running Ubuntu, the minimum hard disk
space required is about 50 GB.

The recommended minimum Ubuntu version is 12.04 or later. Earlier versions may cause
the Yocto Project build setup to fail, because it requires python versions only available
starting with Ubuntu 12.04.

4.3 Host Packages

Essential Yocto Project host packages:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \

build-essential chrpath socat

i.MX layers host packages for a Ubuntu 12.04 or 14.04 host setup:

$ sudo apt-get install libsdl1.2-dev xterm sed cvs subversion coreutils texi2html docbook-utils
python-pysqlite2 help2man make gcc g++ desktop-file-utils libgl1-mesa-dev libglu1-mesa-dev
mercurial autoconf automake groff curl lzop asciidoc

i.MX layers host packages for a Ubuntu 12.04 host setup only:

$ sudo apt-get install uboot-mkimage

© 2016 RadiumBoards Page 11 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

i.MX layers host packages for a Ubuntu 14.04 host setup only:

$ sudo apt-get install u-boot-tools

4.4 Yocto Project Setup

The Freescale Yocto Project BSP Release directory contains a "sources" directory, which
contains the recipes used to build, one or more build directories, and a set of scripts used to
set up the environment.

The recipes used to build the project come from both the community and Freescale. The
Yocto Project layers are downloaded and placed in the sources directory. This sets up the
recipes that are used to build the project.

Fetch complete Yocto repository and build for tixu board

$ git clone https://github.com/sanojvvdn/tixu-src.git

Fetch Standalone Kernel:

$ git clone https://github.com/sanojvvdn/linux-kernel-3.14.git

Fetch Standalone u-Boot:

$ git clone https://github.com/sanojvvdn/u-boot-2015.git

$ cd tixu-src/

Then after set the machine configuration

$ export MACHINE=imx6sltixu

Setup the environment for building the image

$ source ./setup-environment build

Build the image

$ bitbake core-image-minimal

https://github.com/sanojvvdn/tixu-src.git
https://github.com/sanojvvdn/linux-kernel-3.14.git
https://github.com/sanojvvdn/u-boot-2015.git

© 2016 RadiumBoards Page 12 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

4.5 Image Build

This section provides the detailed information along with the process for building an image.

Image Name Target Provided by layer

core-image-minimal A small image that only allows a device to boot. poky

core-image-base A console-only image that fully supports the
target device hardware.

poky

core-image-sato An image with Sato, a mobile environment and
visual style for mobile devices. The image
supports X11 with a Sato theme, Pimlico
applications. It contains a terminal, an editor
and a file manager.

poky

fsl-image-machine-
test

An FSL Community i.MX core image with
console environment - no GUI interface

poky

fsl-image-gui Builds a Freescale image with a GUI without any
QT content. This image recipe works on all
backends for X11, DirectFB, Frame Buffer and
Wayland

meta-fsl-bsp-
release/imx/meta-fsl-
demos

fsl-image-qt5 Builds a QT5 image for X11, Frame Buffer and
Wayland backends

meta-fsl-bsp-
release/imx/meta-fsl-
demos

4.6 Machine Configurations

Freescale provides new or updated machine configurations that overlay the meta- fsl-arm
machine configurations. These files are copied into the meta-fsl-arm/conf/ machine
directory.

The following are all the Freescale machine configuration files that can be selected:

¶ imx6dlsabreauto

¶ imx6dlsabresd

¶ imx6qsabreauto

¶ imx6qsabresd

¶ imx6slevk

¶ imx6sltixu

¶ imx6solosabreauto

¶ imx6solosabresd

¶ imx6sxsabresd

© 2016 RadiumBoards Page 13 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

¶ imx6sxsabreauto

To see all MACHINE options:

$ source setup-environment

If undefined, this script will set $MACHINE to 'imx6sltixu'.

The EULA must be accepted the first time. After that, the acceptance is logged and EULA
acceptance is not required again.

The i.MX machine files are provided in meta-fsl-arm/conf/machine

The MACHINE configuration can also be changed in <buildddir>/conf/local.conf .

The following is a part of a local.conf created from the setup-environment script:

MACHINE ??= 'imxsl6tixu'

DISTRO ?= 'poky'

ACCEPT_FSL_EULA = "1"

4.7 Bitbake options

The bitbake command used to build an image is bitbake <image name>. Additional
parameters can be used for specific activities described below. Bitbake provides various
useful options for developing a single component. To run with a bitbake parameter, the
command looks like this:

bitbake <parameter> <component>

<Component> is a desired build package.

The following table provides some bitbake options.

Bitbake paramater Description

-c fetch Fetches if the downloads state is not marked as done.

-c cleanall

Cleans the entire component build directory. All the changes in the
build directory will be lost. The rootfs and state of the component are
also cleared. The component is also removed from the download
directory.

-c deploy Deploys an image or component to the rootfs.

© 2016 RadiumBoards Page 14 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

-k Continues building components even if a build break occurs.

-c compile -f

It is not recommended that the source code under the tmp directory is
changed directly, but if it is, the Yocto Project might not rebuild it
unless this option is used. Use this option to force a recompile after
the image is deployed.

-g Lists a dependency tree for an image or component.

-DDD Turns on debug 3 levels deep. Each D adds another level of debug.

4.8 Building an Image

The Yocto Project build uses the bitbake command. For example, bitbake <component>
builds the named component.

Each component build has multiple tasks, such as fetching, configuration, compilation,
packaging, and deploying to the target rootfs. The bitbake image build gathers all the
components required by the image and build in order of the dependency per task. The first
build is the toolchain along with the tools required for the components to build.

The following command is an example on how to build an image:

$ bitbake core-image-minimal

4.9 Image Deployment

After a build is complete, the created image resides in <build
directory>/tmp/deploy/images. An image is, for the most part, specific to the machine set in
the environment setup. Each image build creates a U-Boot, a kernel, and an image type
based on the IMAGE_FSTYPES defined in the machine configuration file. Most machine
configurations provide an SD card image (.sdcard), an ext3 and tar.bz2. The ext3 is the root
file system only. The .sdcard image contains U-Boot, the kernel and the rootfs completely
set up for use on an SD card.

4.10 Flashing the SD Card Image

An SD card image provides the full system to boot with U-Boot and kernel. To flash an SD
card image, run the following command:

$ sudo dd if=<image name>.sdcard of=/dev/sd<partition> bs=1M && sync

© 2016 RadiumBoards Page 15 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

5. Board bring-up [First Boot mechanism]

The board can be booted in 3 modes

1. USB mode [Header H1 & H2 Connected]

2. SPI boot mode [No Header Connected]

3. SD card boot mode (Default booting media) [Sort Pins 1&2, 3&4 of H31]

By default the board will be boot in SD Card mode.

Four images needs to be programmed to the board:

Images Descriptions

u-boot.imx Boot loader image

uImage Linux Kernel Image

uramdisk.image.gz File system image

imx6sl-tixu.dtb Device tree image

5.1 USB boot mode

This mode is used to boot the board from USB. User will be able to boot up to boot-loader
(u-boot) using this mode. This boot mode is intended for first time programming of the
board.

1.1.1 Pre-requirements

¶ Micro USB Cable: This is used for powering the board initially and loading image for
USB boot mode.

¶ A Linux PC: 'imx_usb' tool needs to be executed on linux PC for booting. (Tested in
Ubuntu 12.04 & Ubuntu 14.04LTS)

¶ Ethernet Cable: For using TFTP in order to program linux images from u-boot
console. Default IP address of board is 192.168.1.200.

¶ UART Console Cable: Serial console cable for accessing the board console in PC
(through terminal). Baud rate is 115200.

1.1.2 Board detection in PC

If the board is connected to the PC in USB boot mode it will list as below in the output of
lsusb command.

άCǊŜŜǎŎŀƭŜ {ŜƳƛŎƻƴŘǳŎǘƻǊΣ LƴŎέ

© 2016 RadiumBoards Page 16 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

1.1.3 Loading u-boot image

An image for u-boot is loaded into RAM through USB cable.

1. Open two terminals. In one terminal open imx_usb_loader tool and in

another terminal open minicom for serial console of board.

2. To load u-boot image, following command is used.

This command should be executed in imx_usb_loader tool folder of x86

machine. (It is available in tools directory in the source code).

Get the tool here:

$ git clone git://github.com/boundarydevices/imx_usb_loader

Compile it on x86 machine:

$ cd imx_usb_loader

$ make

$ sudo ./imx_usb<path_for_u-boot_image>

1. To stop at u-boot prompt press any key on console window opened using
minicom.

5.2 SPI Boot Mode

1.1.4 Writing images into flash

Load the u-boot image using USB boot mode.

TFTP server is needed to load the kernel image and rootfs in RAM.

(For tftp setup follow the below link)

https://mohammadthalif.wordpress.com/2010/03/05/installing-and-testing-tftpd-in-ubuntudebian/.

This is only for example. User can follow any tftp installation method. To write images into
flash memory following commands are used.

Programming to NOR Flash :
===
Writing u-boot image
===
tftp 0x80800000 u-boot.imx
sf probe
sf erase 0x0 0x60000
sf write 0x80800000 0x400 0x60000

After writing u-boot image, reboot the board by power off/on. Now u-boot automatically
will be loaded. Stop u-boot at the end stage as discussed earlier.

===

Writing kernel image
===
tftp 0x82000000 uImage
sf probe

https://mohammadthalif.wordpress.com/2010/03/05/installing-and-testing-tftpd-in-ubuntudebian/

© 2016 RadiumBoards Page 17 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

sf erase 0x100000 0x500000
sf write 0x82000000 0x100000 0x500000

===

Writing ramdisk (file system) image
===
tftp 0x82600000 ramdisk
sf probe
sf erase 0x600000 0x1400000
sf write 0x82600000 0x600000 0x1400000

===

Writing device tree image
===

tftp 0x88000000 imx6sl-tixu-ldo.dtb
sf probe
sf erase 0x2000000 0x20000
sf write 0x88000000 0x2000000 0x20000

##NOTE: In these commands, names and memory ranges may vary later based on image
name and size.

1.1.5 Setting environment variables

After writing all images into flash, we have to set environment variables according to
written images. Based on these environment variables only, u-boot will load all other
images.

setenv bootargs 'console=ttymxc0,115200 root=/dev/ram rw ramdisk_size=21000'

Setenv loadimages 'sf probe;sf read 0x82600000 0x600000 0x1400000;sf read 0x88000000
0x2000000 0x20000;sf read 0x82000000 0x100000 0x500000'

Setenv bootcmd 'run loadimages;bootm 0x82000000 0x82600000 0x88000000'

saveenv

===

After setting all environment variables reboot the board by power button Give input for
username as root.

root@imx6sltixu:~#.

5.3 SD Card boot mode

In this mode, board will boot from the images on SD card.

4.3.1 Format the SD card

Format the SD card using gparted application.

To install gparted application, run the following command:

¶ $ sudo apt-get install gparted

After installing gparted, run the following command to format the SD card

© 2016 RadiumBoards Page 18 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

¶ $ sudo gparted

Now unmount the SD card as shown below

© 2016 RadiumBoards Page 19 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

After unmounting the SD card, delete the partion as shown below

Now click on the button shown below

© 2016 RadiumBoards Page 20 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

After formatting the SD card, remove the card and remount it again, after that go to the
image directory for example

¶ $ cd /home/<user>/tixu_pmic/src/build/tmp/deploy/images/imx6sltixu

¶ sudo dd if=core-image-minimal-imx6sltixu-xxxx.sdcard of=/dev/<sd card device>
bs=1M && sync

Sort the pins 1 and 2, 3 and 4 of the header H31.

Reboot the board to boot from SD card.

6. LEDs Notifications

LED Interface Indication COLOUR

D4 Wi-Fi (Client mode) Green

D4 Wi-Fi (AP mode) Green (blinking)

D5 ZigBee LED Yellow

D6 BT LED Orange

D4 and D5 Zigbee to Wlan Bridging Yellow (Zigbee) and Green (Wi-Fi (blinking))

D4 and Ethernet LED wlan to Ethernet Bridging Green (Wi-Fi (blinking)) and Ethernet LED

DA2 RESET LED Red

7. Wi-Fi Interface

7.1 Client mode

Following command will invoke the wlan0 interface

© 2016 RadiumBoards Page 21 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

¶ ifconfig wlan0 up

wlan0 Link encap:Ethernet HWaddr 4c:bb:58:de:5a:fe

 inet addr:192.168.41.184 Bcast:192.168.43.255 Mask:255.255.252.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:82574 errors:0 dropped:0 overruns:0 frame:0

 RX bytes:11217279 (11.2 MB) TX bytes:794355 (794.3 KB)

{Ŏŀƴ ǘƘŜ !tΩǎ ƛƴ ƻǊŘŜǊ ǘƻ ŎƻƴƴŜŎǘ ƻƴŜΦ

¶ iw wlan0 scan | grep "SSID"

Connect to any secured selected SSID.

¶ wpa_passphrase <AP_NAME> <PASSWORD> > /etc/wpa_supplicant.conf

To be able to connect to a remote AP, wpa_supplicant daemon must run to provide WPA
key negotiation with a WPA Authenticator and EAP authentication with Authentication
Server.

¶ wpa_supplicant -Dnl80211 -iwlan0 -c /etc/wpa_supplicant.conf -B

Request the dynamic IP.

¶ udhcpc -i wlan0

Connect to Open mode AP

{Ŏŀƴ ǘƘŜ !tΩǎ ŀǊƻǳƴŘ ƛƴ ƻǊŘŜǊ ǘƻ ŎƻƴƴŜŎǘ ǘƘŜ ŘŜǎƛǊŜŘ ƻƴŜ
¶ $ iw wlan0 scan | grep SSID

In order to connect to AP use the command
¶ $ iw wlan0 connect <AP SSID>

We can check the connection by invoking

¶ iw wlan0 link

Request the dynamic IP.

¶ udhcpc -i wlan0

© 2016 RadiumBoards Page 22 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

Terminate the connection and Disable the Wi-Fi.

¶ wifi_stop.sh

6.1 AP mode

Run the following script to enable the WLAN in AP mode
¶ tixu_AP_en.sh

© 2016 RadiumBoards Page 23 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

It will ask whether the user wants to create the AP in secured mode or open mode enter 1
to create the AP in secured mode and enter 2 to create AP in open mode.

wlcore: PHY firmware version: Rev 8.2.0.0.232

wlcore: firmware booted (Rev 8.9.0.0.48)

IPv6: ADDRCONF(NETDEV_UP): wlan0: link is not ready

press 1-secure mode 2-open mode

It will create a Wi-Fi access point (AP) named TIxU_PMIC.

While searching for Wi-Fi networks, if the user has created the AP in secure mode then its
default password is: 123456789.

If user wants to change the name of ssid and password then open hostapd.conf

vi /etc/hostapd.conf

ssid=<new SSID>

wpa_passphrase=<new paswd>

To close the Wi-Fi in AP mode, run the following command

wifi_stop.sh

6.2 WLAN to Ethernet Bridging

Run the following command to create the bridge

wlan-eth_bridge_create.sh

It will ask whether the user wants to create the AP in secured mode or open mode enter 1
to create the AP in secured mode and enter 2 to create AP in open mode.

wlcore: PHY firmware version: Rev 8.2.0.0.232

wlcore: firmware booted (Rev 8.9.0.0.48)

IPv6: ADDRCONF(NETDEV_UP): wlan0: link is not ready

press 1-secure mode 2-open mode

It will create the bridge interface named wlan0-bg.

To check the bridge interface, run ifconfig

wlan0-bg Link encap:Ethernet HWaddr 00:50:C2:BC:C0:F1

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:3 errors:0 dropped:0 overruns:0 frame:0

 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:328 (328.0 B) TX bytes:1296 (1.2 KiB)

To Remove the Bridge interface

ifconfig wlan0-bg down

brctl delbr wlan0-bg

wifi_stop.sh

© 2016 RadiumBoards Page 24 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

6.3 Wi-Fi Throughput

TCP throughput: 94 Mb/s.

iperf -s -i2

--

Server listening on TCP port 5001

TCP window size: 85.3 KByte (default)

--

[4] loca l 192.168.1.100 port 5001 connected with 192.168.1.10 port 57301

[ID] Interval Transfer Bandwidth

[4] 0.0 - 2.0 sec 21.7 MBytes 91.0 Mbits/sec

[4] 2.0 - 4.0 sec 22.4 MBytes 94.1 Mbits/sec

[4] 4.0 - 6.0 sec 22.4 MBytes 93.9 Mbits/sec

[4] 6.0 - 8.0 sec 22.4 MBytes 94.1 Mbits/sec

[4] 8.0 - 10.0 sec 22.4 MBytes 94.0 Mbits/sec

[4] 10.0 - 12.0 sec 22.4 MBytes 94.1 Mbits/sec

[4] 12.0 - 14.0 sec 22.4 MBytes 94.1 Mbits/sec

[4] 14.0 - 16.0 sec 22.4 MBytes 93.8 Mbits/sec

root@imx6sltixu:~# iperf -c 192.168.1.100 -i2 -t30

--

Client connecting to 192.168.1.100, TCP port 5001

TCP window size: 43.8 KByte (default)

--

[3] local 192.168.1.10 port 57301 connected with 192.168.1.100 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0 - 2.0 sec 22.1 MBytes 92.8 Mbits/sec

[3] 2.0 - 4.0 sec 22.9 MBytes 95.9 Mbits/sec

[3] 4.0 - 6.0 sec 22.6 MBytes 94.9 Mbits /sec

[3] 6.0 - 8.0 sec 22.4 MBytes 93.8 Mbits/sec

[3] 8.0 - 10.0 sec 22.4 MBytes 93.8 Mbits/sec

[3] 10.0 - 12.0 sec 23.0 MBytes 96.5 Mbits/sec

[3] 12.0 - 14.0 sec 23.0 MBytes 96.5 Mbits/sec

[3] 14.0 - 16.0 sec 22.2 MBytes 93.3 Mbits/sec

[3] 16.0 - 18.0 sec 22.6 MBytes 94.9 Mbits/sec

[3] 18.0 - 20.0 sec 22.2 MBytes 93.3 Mbits/sec

© 2016 RadiumBoards Page 25 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

8. Bluetooth Interface

Run following script to enable the BT interfaces

bt_start.sh

To check the BT interface run following command

hciconfig hci0

 hci0: Type: BR /EDR Bus: UART

 BD Address: 98:7B:F3:CF:CC:6F ACL MTU: 1021:6 SCO MTU: 180:4

 UP RUNNING PSCAN ISCAN

 RX bytes:2483598 acl:2615 sco:0 events:407 errors:0

 TX bytes:7379 acl:236 sco:0 commands:151 errors:0

Scan the devices in vicinity:

¶ hcitool scan

Pair with selected device:

¶ bt-device -c <bt_addr>

To see the paired devices run the following command

¶ bt-device -l

For non-android non-windows mobiles:

Run the following command to transfer files to remote BT device

¶ obexftp -b <remote_bt_addr> -p <file_name>

For removing the paired device

¶ bt-device -r <BD_addr>\

To see the channel number of the remote BT to send file to that remote device, run the
following command.

¶ sdptool browse <bt_add>

Service Name: OBEX O bject Push

Service RecHandle: 0x1000b

Service Class ID List:

 "OBEX Object Push" (0x1105)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 "RFCOMM" (0x0003)

 Channel: 25

 "OBEX" (0x0008)

Profile Descriptor List:

 "OBEX Object Push" (0x1105)

 Version: 0x0100

Transfer files to any android/windows mobile

¶ obexftp --uuid none -b <BT_addr> -B <channel No.> -p <file path>

© 2016 RadiumBoards Page 26 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

example: obexftp --uuid none -b FC:64:BA:06:B1:F4 -B 12 -p File.txt

<BT_addr>=Blueooth mac address of remote device

<file path>=File with exact path to be send

<channel No.>=OBEX Object Push service channel number

To close the BT interface

¶ bt_stop.sh

9. ZigBee Interface

To check ZigBee interface open two serial consoles of the board (one uart console or 2
dedicated telnet accesses). (Board default IP is 192.168.1.200).

On the first terminal, change the directory to /home/root/zigbee/servers.

cd zigbee/servers

Run the script using following command

./zigbeeHAgw bbb > /dev/null 2&>1

On the second terminal, change the directory to /home/root/zigbee/servers.

cd zigbee/servers

Run the Zigbee testing application using the command

./start_zigbeeApp

Now a Demo app will be displayed which can be used to view the ZigBee devices and control
them.

To see more HELP type ϥΚΩΦ

9ƴǘŜǊ άǇέ ǘƻ ǎǘŀǊǘ ǎŜŀǊŎƘƛƴƎ ŦƻǊ ŜƴŘ ŘŜǾƛŎŜ

After the device is connected press UP/DOWN arrow to select that device and then enter
άƴέ ǘƻ ǘǳǊƴ hb ǘƘŜ ŜƴŘ ŘŜǾƛŎŜ ŀƴŘ άŦέ ǘƻ ǘǳǊƴ hCC ǘƘŜ ŜƴŘ ŘŜǾƛŎŜΦ

To close the zigbee interfaces

9ƴǘŜǊ άǉέ ƻƴ ǘƘŜ ǘŜǊƳƛnal on which zigbee application is running and enter ctrl+c on the
other terminal.

© 2016 RadiumBoards Page 27 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

9.1 ZigBee to WLAN Bridging

Run the following script file

¶ zigbee_wlan_bridge.sh

This script will produce output similar to image below

Open Chrome browser and add Advanced Rest Client extension to it.

© 2016 RadiumBoards Page 28 of 27
All Rights Reserved

 TPS65910 Based IOT Gateway User Guide V1.0

To add new node select GET and write in Request URL:

http://<IP>/zbha/<user>/node/new

<user> is by default user1

This make zigbee server to open state so that it can connect to end devices

If an end device is connected to the zigbee server it will look like this.

